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9 Abstract   

Echo-integration  measurements  have  been t raditionally  made  from  dedicated f isheries  survey  

vessels,  but  extensive  measurements  from  moorings,  autonomous  vehicles,  and f ishing  vessels  

are  increasingly  available.  Processing  these  data  by  traditional  means  developed f or  well-staffed  

fisheries  surveys  can b e  prohibitively  time-consuming,  which h as  limited th eir  use.  Automated  

processing m ethods  exist  to e fficiently  handle  these  large  datasets;  however,  as  compared t o  

post-processing  by  trained a nalysts,  these  methods  require  substantial  expertise  and  

methodological  development,  and th ey  often p roduce  less  certain r esults.  Here,  we  evaluate  the  

use  of  subsampling,  which ta kes  advantage  of  the  spatial  correlation c ommon in m  any  fish  

populations,  to i mprove  the  efficiency  of  traditional  processing m ethods  while  retaining  a  high  

level  of  precision.  We  subsampled d ata  from  an e astern B ering S ea  walleye  pollock ( Gadus  

chalcogrammus)  acoustic-trawl  survey  and  compared e stimates  of  pollock b ackscatter  from  

subsamples  to t hose  from t he  full  survey.  Over  a  survey-wide  scale,  processing  <  5%  of  the  data  
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22 resulted in e  stimates  within 5 %  of  those  from  processing  the  full  survey.  This  suggests  that

some  applications  there  may  be  diminishing  returns  associated w ith e xhaustively  processin

large  spatially  correlated  datasets.  We  present  an e xample  that  applies  this  simple  approac

subsampling  archived e chosounder  data  from  chartered f ishing  vessels  to p rioritize  the  are

surveyed i n f uture  surveys,  which w ould n ot  have  been f easible  without  subsampling.  Whe

averaged v alues  over  large  scales  (e.g.  over  a  survey  domain)  are  required,  precise  echo  

integration e stimates  can  be  obtained w ith m odest  effort  by  processing  relatively  small  

subsamples  of  a  dataset.    

Keywords:  Acoustic  data  analysis,  acoustic  trawl  surveys,  subsampling,  walleye  pollock  
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32 1.  Introduction  

Acoustic  surveys  are  regularly  used t o a ssess  the  distribution a nd a bundance  of  pelagic  fishes  

and z ooplankton o ver  large  spatial  areas  (Simmonds  and M acLennan 2 005).  Traditionally,  

acoustic  backscatter  from f ish h as  been  measured  from  dedicated s urvey  vessels,  but  backscatter  

measurements  are  proliferating  on  an in creasing  number  of  acoustic  platforms.  Acoustic  data  

collected b y  fishing  vessels  are  increasingly  being u sed t o e xtend s urvey  efforts  to u nder-

sampled ti mes  and l ocations  (Barbeaux  et  al.  2017;  Fässler  et  al.  2016;  Honkalehto e t  al.  2011;  

Honkalehto e t  al.  2017).   Autonomous  platforms  including  unmanned v ehicles  and  moored  echo  

sounders  are  being  used t o i ncrease  the  spatial  and/or  temporal  range  of  surveys  (Brierley  et  al.  

2006;  De  Robertis  et  al.  2018,  Mordy  et  al.  2017),  and t o s tudy  the  timing a nd d uration o f  

spawning  (Kaltenberg  et  al.  2010;  De  Robertis  et  al.  2018)  and d iel  vertical  migration b ehavior  

(Kaartvedt  et  al.  2009).  Large  acoustic  datasets  are  also a vailable  from  online  archives  (Wall  et  
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44 al.  2016).   While  the  increase  in d ata  availability  has  benefitted in vestigations  of  fish a nd  

zooplankton d istribution,  abundance  and b ehavior,  it  has  led t o a n in crease  in th e  volume  of  data  

to b e  processed.  The  inability  to e fficiently  process  these  data  often  limits  their  utility  (Wall  et  al.  

2016).  

A  primary  goal  in p rocessing  acoustic  backscatter  for  biological  studies  is  to a ssign th e  observed  

acoustic  backscatter  to s pecies  or  species  group.  Traditionally,  analysts  accomplish th is  by  

interpreting  backscatter  viewed a s  echograms  (i.e.  based o n s cattering  strength,  depth  

distribution,  school  morphology)  in c onjunction w ith in formation f rom n earby  trawl  or  optical  

samples  as  well  as  historical  distributions  of  the  species  in q uestion ( reviewed i n H orne  2000;  

McClatchie  et  al.  2000;  Simmonds  and  MacLennan 2 005;  ICES  2015b).  Analyst  review  also  

ensures  that  artifacts  including  echoes  from  the  seafloor,  bubbles  swept  under  the  transducer,  and  

noise  spikes  are  not  present  in e chograms,  or  that  these  artifacts  are  removed s o t hat  they  do n ot  

bias  echo i ntegrations  (Ryan  et  al.  2015).  Where  schools  are  located n ear  the  seafloor  or  surface  

boundaries,  analyst  judgment  can b e  helpful  in s eparating  backscatter  from f ish o r  invertebrates  

from  that  associated  with t he  boundary  (ICES  2015b).  While  these  post-processing  methods  are  

well-established a nd  effective,  they  were  developed in t  he  context  of  well-staffed,  survey-vessel  

based,  acoustic-trawl  surveys,  and t his  type  of  processing  may  be  too ti me  consuming  for  other  

applications.    

A  pragmatic  approach to r  apidly  processing  acoustic  data  may  lie  in t he  geographic  structure  of  

fish d istributions.  Positive  spatial  autocorrelation,  a  general  property  in w hich e cological  

variables  tend to h  ave  increased s imilarity  at  shorter  distances  (Rossi  et  al.  1992;  Legendre  

1993),  is  common in   many  fish p opulations.  This  is  likely  because  fish te nd to f  orm  

geographically c ontinuous  schools  and b ecause  important  environmental  factors  (i.e.  water  
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67 temperature)  are  also s patially  autocorrelated  (Kleisner  et  al.  2010).  In t he  eastern B ering S ea  of  

Alaska  (EBS),  where  the  current  study  is  focused,  walleye  pollock  (Gadus  chalcogrammus,  

hereafter  referred to a  s  pollock),  demonstrate  a  high d egree  of  spatial  correlation:  the  patch s ize  

of  EBS  pollock  is  consistently  >  20 n autical  miles  (nmi;  1 n mi  =  1.85  km),  and o ften >   50 n mi  

(Horne  and  Walline  2005;  Walline  2007).  In th e  EBS,  pollock a ggregations  regularly  extend f or  

50-100 n mi  (Walline  2007).   

Systematic  sampling  designs,  in w hich t ransects  are  evenly  spaced f rom a   starting  point  within a   

survey  area  (Cochran 1 977),  are  commonly  used i n i n a coustic-trawl  surveys  because  they  

provide  precise  estimates  of  mean a bundance  for  spatially  correlated p opulations  (Simmonds  and  

Fryer  1996,  Simmonds  and M acLennan 2 005).  This  is  especially  important  in m any  applications  

(e.g.  abundance  surveys),  as  the  primary  quantity  of  interest  from a coustic  measurements  is  the  

mean b ackscatter  associated w ith a   given s pecies  or  species  group o ver  the  survey  domain,  

which is   proportional  to t he  density  of  organisms  in t he  area  (MacLennan e t  al.  2002).  

Importantly,  the  precision o f  systematic  sampling im proves  with i ncreased  spatial  correlation  

because  each s ample  effectively  contains  more  information ( Simmonds  and  MacLennan 2 005).  

We  extend th is  systematic  approach to s  ubsampling  acoustic  backscatter  data  collected a long  the  

survey  trackline,  and h ypothesize  that  estimates  of  average  backscatter  obtained b y  processing  a  

small  fraction o f  a  large-scale  dataset  can  accurately  characterize  the  mean  value  along  the  entire  

vessel  track.   

We  first  compare  backscatter  estimates  obtained f rom  subsampled  acoustic  tracklines  to t hose  

obtained f rom  completely  sampled t racklines  using  data  from  a  large-scale  acoustic  trawl  survey  

in t he  EBS.  This  survey  was  used to i  nvestigate  two r elated q uestions:  can  processing  a  small  

subset  of  data  yield e stimates  of  mean b ackscatter  that  are  close  to th ose  from  the  full  survey,  
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90 and h ow  does  this  change  with t he  size  of  the  survey  area  of  interest?  We  then p resent  an  

example  application w here  the  subsampling  approach p roved u seful.  In  recent  years,  water  

temperatures  in th e  EBS  have  been w armer,  and t here  have  been i ncreased  numbers  of  pollock  in  

shallow  water  to th e  northeast  of  the  traditional  acoustic  trawl  survey  area  (Honkalehto e t  al.  

2018;  Stevenson a nd  Lauth 2 018).  As  a  result,  there  has  been  a  desire  to e xtend t he  spatial  

coverage  of  EBS  acoustic-trawl  surveys  to c apture  more  of  the  population.  To a id in p  lanning  

this  survey,  we  efficiently  analyzed s ubsamples  of  a  large  archived d ataset  from c hartered  fishing  

vessels  when s tandard s urvey  data  were  unavailable.  We  then u sed th e  results  to e xamine  which  

of  two p roposed a reas  should b e  given  more  priority  when  extending  the  spatial  coverage  of  the  

EBS  acoustic  survey.  
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101 2.  Materials  and  Methods  

2.1 A coustic  data  sources  

The  analysis  used a coustic  data  from  two  fish s urveys  conducted i n A laska’s  EBS  (Figure  1).  

The  2016 a coustic  trawl  survey  (subsequently  referred t o  as  “AT  survey”)  primarily  assessed  

midwater  pollock  distribution a nd a bundance  on th e  Bering  Sea  shelf  (Figure  2;  Honkalehto e t  

al.  2018).  The  AT  survey  is  part  of  a  biennial  time  series  in t he  Bering  Sea  conducted a board t he  

NOAA  ship  Oscar  Dyson.  The  survey  methods  are  described i n d etail  in H onkalehto e t  al.  2018.  

Briefly,  this  survey  used  a  systematic  transect  design w ith 2 0 n mi  transect  spacing,  covering  

approximately  5000 n mi  of  transect  line.  Along  transects,  acoustic  backscatter  was  measured a t  a  

ping  rate  of  ~1 s -1  using  a  38 k Hz  calibrated S imrad E K60 s cientific  echosounder.  Trawl  hauls  

were  regularly  conducted  to id entify  the  species  and s ize  composition o f  acoustic  scatterers,  and  
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112 this  information w as  used t o p artition a coustic  backscatter  to s pecies  and s ize  classes.  As  is  

typical  in t he  EBS  AT  survey,  the  trawl  catch  was  dominated b y  pollock,  which a ccounted f or  

89.5%  of  catch b y  weight  in m idwater  trawls  (Honkalehto e t  al.  2018).  Chrysaora m elanaster,  a  

weakly  scattering  jellyfish ( De  Robertis  and T aylor  2014),  accounted f or  much o f  the  remainder  

of  the  catch  (8.2%  by  weight).   

The  second  acoustic  data  collection o ccurred d uring  the  2017  eastern B ering  Sea  bottom  trawl  

survey  (subsequently  referred to   as  “BT  survey”).  This  survey  is  primarily  designed t o  assess  

demersal  fish a nd  crab s tocks,  and c onsisted o f  bottom  trawls  at  fixed s tations  centered w ithin 2 0  

nmi  ×  20 n mi  grid  cells  (Conner  and  Lauth 2 017,  Stauffer  2004).  In 2 017,  the  survey  covered  a  

large  fraction o f  the  EBS  continental  shelf,  including  much o f  the  AT  survey  area  (Figure  1).   

The  survey  was  conducted o n t wo c hartered c ommercial  fishing  vessels  which c ontinuously  

collected a coustic  backscatter  data  with 3 8  kHz  calibrated S imrad E S60 e chosounders  at  a  rate  of  

~1 p ing  s -1 .   A  subset  of  these  data  are  used t o p rovide  an i ndex  of  midwater  pollock a bundance,  

which is   used a s  a  separate  time  series  in th e  pollock  stock a ssessment  model  (Honkalehto e t  al.  

2017;  Honkalehto e t  al.  2011;  Ianelli  et  al.  2017).   

 

2.2.  AT  survey  acoustic  data  analysis  

During  the  AT  survey,  38 k Hz  acoustic  data  were  processed b y  experienced a nalysts.  As  part  of  

this  processing,  analysts  attributed a coustic  backscatter  to s pecies  (Honkalehto e t  al.  2018).  

Pollock  dominate  pelagic  fishes  in t his  survey  (e.g.  Honkalehto e t  al.  2018),  and e ssentially  all  

the  backscatter  consistent  with m idwater  and d emersal  fish a ggregations  was  attributable  to  

pollock.  We  echo in tegrated b ackscatter  attributed to p  ollock  in th e  water  column ( 16 m b  elow  
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134 the  surface  to 0 .5 m a  bove  the  sea  floor)  at  a  1 p ing  horizontal  resolution u sing  Echoview  

software  (version 8 .04.)   This  resulted in a    measurement  of  the  nautical  area  scattering  

coefficient  (��,  m2  nmi  -2 ,  see  MacLennan  et  al.  2002 f or  a  description o f  acoustic  units)  

attributed to p  ollock  for  each p ing.  

We  divided t he  survey  track  into v arious  sized s egments  (subsequently  referred to   as  sub-areas)  

to e xplore  the  effects  of  survey  size  on s ubsample  backscatter  estimates:  15-nmi  sub-areas  

representing  short  distances,  180-nmi  sub-areas  representing  the  average  AT  survey  transect  

length,  750-nmi  sub-areas  representing  a  moderately  sized s urvey,  1500-nmi  sub-areas  

representing  a  relatively  large  survey,  and a   5000-nmi  representation o f  the  entire  EBS  AT  

survey.  The  spatial  location o f  the  sub-area  datasets  is  shown in   Figure  3;  the  total  number  of  

datasets  and t he  number  of  pings  that  define  each  sub-area  are  shown i n T able  1.  Each d ataset  

consisted o f  continuous  pings  ordered s equentially  along  transect  lines;  some  datasets  span  

multiple  transects  (Figure  3).  The  last  dataset  for  a  given s ub-area  often i ncluded f ewer  pings  

than o ther  datasets  within t he  sub-area.  This  was  because  the  number  of  pings  in th e  full  AT  

survey  was  not  equally  divisible  by  the  number  of  pings  that  defined a   given s ub-area.  In c ases  

where  the  number  of  pings  in t he  final  dataset  was  >  50%  of  the  number  of  pings  that  define  that  

sub-area,  the  ‘short’  dataset  was  retained a s  a  unique  dataset.  In  cases  where  the  number  of  pings  

in t he  final  dataset  was  <50%  of  the  number  of  pings  that  defined t he  sub-area,  it  was  combined  

with th e  previous  dataset  within t he  sub-area.  The  mean  ��  of  each d ataset  d  was  then c alculated  

as  the  mean  ��  of  all  pings  i  in th at  dataset:  
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155 Within e ach d ataset  d,  we  then c reated u nique  subsamples  by  sampling  contiguous  50-ping  

segments  at  regular  intervals  from a   given s tarting  point  (i.e.  systematic  sampling,  Cochran 1 977;  

Figure  4a).  The  50-ping  segment  length  was  chosen b ecause  it  allowed a nalysts  to c learly  and  

rapidly  visualize  important  features  (backscatter  strength,  aggregation s hape,  and in dividual  fish  

targets)  and  remove  artifacts  (bottom  integrations,  surface  turbulence,  or  noise  spikes)  in  

echograms  during  this  survey  (Figure  4b,  Figure  5).  At  a  typical  survey  speed o f  6.2  m/s,  a  50-

ping  unit  represents  approximately  309  m  of  trackline.  The  mean  ��  of  each  subsample  s  was  

then c alculated  as  the  mean  ��  of  all  pings  j  in th at  subsample:  

1 

���,�  =  � �
 �,��  

�� � 

The  difference  between t he  mean  ��  estimated  from a   given s ubsample  (i.e.   ���,�;  orange  shaded  

region in   Figure  4b)  and  all  pings  in th e  dataset  (i.e.  ���,�;  unshaded r egion in   Figure  4b),  referred  

to a s  percent  error,  was  then c alculated f or  each s ubsample  s  as   

����� 
� �����, =  ��� ����� ��,�� ������,� 
� 

 ������,� 
  × 100  

Percent  error  was  used a s  a  metric  of  subsample  precision,  with lo wer  percent  error  indicating  

higher  precision.  

To d etermine  the  relationship b etween p ercent  error  and s ubsample  size  in  the  AT  survey,  we  

subsampled  from  1%  to  100%  of  the  pings  present  in d atasets  in 1 %  increments.  For  each d ataset  

and s ubsampling  effort  level,  we  systematically  subsampled  continuous  50-ping  units  starting  at  

the  first  ping  in th e  dataset.  Percent  error  for  each s ubsampling  effort  level  was  calculated f or  

three  sub-areas:  15-nmi  (n =   327 d atasets),  180-nmi  (n =   28 d atasets),  and  5000-nmi  (n =   1  
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175 dataset).   To a ssess  the  precision o f  percent  error  estimates,  we  estimated 9 5%  confidence  

intervals  by  bootstrapping:  within e ach s ub-area  and s ubsampling  effort  level,  we  resampled  

percent  error  values  with  replacement  (n =   5000 i terations),  and 9 5%  confidence  intervals  were  

estimated b y  taking th e  2.5%  and 9 7.5%  percentiles  of  the  resulting  distribution.  Confidence  

intervals  were  calculated  for  the  15-nmi  and 1 80-nmi  sub-areas  only;  confidence  intervals  could  

not  be  computed f or  the  5000-nmi  sub-area  as  there  was  only  a  single  estimate  at  each  

subsampling  effort  level.  

Because  we  were  primarily  interested i n th e  performance  of  small  subsamples  that  can b e  post-

processed in a    fraction o f  the  time  required f or  traditional  analysis,  we  further  focused o n tw o  

specific  levels  of  effort:  subsamples  containing  5%  and 1 0%  of  the  pings  present  in c omplete  

datasets.  This  allowed f or  20 u nique  subsamples  per  dataset  in t he  case  of  5%  subsampling  (i.e.  

the  full  dataset  could b e  systematically  sampled  from 2 0 d ifferent  starting  points  to c reate  20  

unique  subsamples,  each  containing  5%  of  the  full  dataset)  and 1 0 u nique  subsamples  per  dataset  

in t he  case  of  10%  subsampling.  Percent  error  of  the  mean b ackscatter  estimate  relative  to  

processing  100%  of  the  pings  was  then  calculated  for  each d ataset  and s ubsample  at  five  sub-

area  lengths  ranging  from  15-nmi  to 5 000-nmi  (Table  1).   

 

2.3 B T  survey  acoustic  data  analysis  

Backscatter  data  from  the  BT  survey  were  processed  rapidly  via  subsampling  to e valuate  the  

abundance  of  pollock  backscatter  in s everal  sectors  of  the  Bering S ea  shelf  during  summer  2017.  

We  were  specifically  interested in e  stimating  if  the  amount  of  pollock  backscatter  present  in t he  

northeastern p art  of  the  EBS  shelf  was  sufficient  to m erit  surveying  this  region i n 2 018.  We  
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197 prepared a   subset  of  data  for  efficient  analysis  by  identifying  the  data  to b e  processed,  and  

automating  repetitive  tasks  where  possible.  We  read  the  data  files,  fit  and c orrected f or  a  periodic  

±1 d B  systematic  error  present  in E S60 d ata  (Ryan  and  Kloser  2004),  and s ubsampled  

continuous  50-ping  units  from  the  raw  echosounder  files  using  the  Echolab  MATLAB  post-

processing  toolkit.  We  obtained t wo u nique  subsamples  for  each s urvey  vessel,  with o ne  starting  

at  the  first  available  50-ping  interval  (i.e.  pings  1- 50)  and th e  second s tarting  at  the  10th  available  

interval  (i.e.  pings  501-550).  In b oth s ubsamples,  we  sampled 5 %  of  the  total  data  by  spacing  50-

ping  units  sequentially  every  1000 p ings  from  the  starting  point.  At  a  typical  vessel  speed o f  5.1  

m/s,  a  50-ping  unit  represents  approximately  257  m.  Measurements  at  speeds  <  3.1 m /s  were  

then r emoved to a  void s ampling  regions  where  vessels  were  idle,  or  when t he  vessel  was  

trawling,  which m ay  influence  fish b ehavior  (DeRobertis  and  Wilson,  2006).   The  subsampled  

data  were  then r e-written in th  e  same  format  as  the  echosounder  files  using E cholab.  After  

subsampling  pings  and r emoving  measurements  taken d uring  idle  and tr awling  periods,  the  

resulting  files  generally  contained 2 .0%  - 3.5%  of  the  pings  present  in th e  original  data.  We  

imported t hese  files  into E choview  and  added th e  lines  to b e  edited b y  the  analyst  (seafloor  

exclusion,  surface  exclusion,  and li nes  to s eparate  near-surface  scattering  and p ollock  regions)  in  

an a utomated f ashion a nd s aved t he  file  for  subsequent  analyst  review.    

While  targeted t rawl  or  optical  sampling  to v erify  acoustic  backscatter  was  not  conducted d uring  

the  BT  survey,  pollock  dominate  the  EBS  midwater  environment,  and a re  likely  to c onstitute  a  

large  proportion o f  the  observed b ackscatter  consistent  with f ish a ggregations  (De  Robertis  et  al.,  

2010,  Honkalehto e t  al.  2011).  Backscatter  in s ubsampled  echograms  was  therefore  classified b y  

the  analyst  as  pollock  when s ingle  targets  and  aggregations  consistent  with p ollock  

characteristics  were  detected a nd  “unidentified b ackscatter”  in a ll  other  cases  (Figure  5).   The  

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

10 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

220 analyst  reviewed t he  echograms  and i dentified b ackscatter  consistent  with p ollock,  edited t he  

bottom  and s urface  exclusion li nes,  and e xcluded a ny  artifacts.  Backscatter  in th e  water  column  

(16 m   below  the  surface  to 0 .5 m   above  the  sea  floor)  was  echo-integrated a t  a  0.5 n mi  horizontal  

resolution w ith a   minimum  Sv  threshold o f  -70 d B  re  1 m -1 .   

The  two B T  survey  vessels  did n ot  travel  along  fixed tr ansect  lines  as  in th e  AT  survey,  and  

survey  effort  was  not  consistent  throughout  the  EBS  survey  region.  To a llow  for  comparisons  

across  the  survey  region,  ��  attributed to p  ollock  was  averaged in to 2 0-nmi  ×  20-nmi  cells  to  

obtain a   single  per-cell  measure  of  pollock  backscatter  for  each 5 %  subsample.  The  mean  ��  for  

each c ell  c  containing  observations  i  was  calculated a s:  

1 

���," =   ��
 �, � 

�� � 

Because  the  goal  of  the  BT  survey  analysis  was  to in form  the  allocation o f  survey  effort  in la rge-

scale  areas  of  the  EBS  in  future  surveys,  we  then f urther  averaged  ��  attributed t o p ollock  within  

cells  into 3 r  egions:  the  core  survey  area  covered  by  the  semiannual  Eastern B ering  Sea  acoustic  

trawl  survey  (  “core  EBS”,  Region 1 ,  Figure  2),  the  potential  expanded a coustic  survey  area  in  

the  Northern B ering  Sea  (“NBS  extension”;  Region 2 ,  Figure  2),  and a   large  area  in th e  EBS  that  

is  not  currently  under  consideration f or  acoustic  survey  expansion ( “EBS  shallows”;  Region 4 ,  

Figure  2).  The  mean p ollock  ��  in e ach s urvey  region  r  containing  cells  c  was  calculated  as:  

1 

���,#  =  � ��
 �,"  

"� � 

To a ssess  the  precision o f  the  two s ubsamples  at  the  regional  scale,  we  estimated 9 5%  

confidence  intervals  by  bootstrapping:  within e ach  subsample  and r egion,  we  resampled  cells  
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240 with r eplacement  to c alculate  mean p ollock  ��  (n =   5000 it erations),  and 9 5%  confidence  

intervals  were  estimated  by  taking  the  2.5%  and 9 7.5%  percentiles  of  the  resulting  distribution.  

Finally,  we  compared th e  relative  merits  of  extending  survey  efforts  into t he  NBS  extension  

region  and a   second r egion u nder  consideration,  the  Russian C ape  Navarin  Shelf  region  

(“Russian s helf”’  Figure  2,  Region 3 ).  We  obtained p ollock  backscatter  measurements  in t he  

Russian s helf  from  9 a coustic-trawl  surveys  that  surveyed th is  region f rom 1 994-2014 ( Alaska  

Fisheries  Science  Center  1994;  Honkalehto e t  al.  2002,  2005,  2008,  2009,  2010,  2012,  2013;  

Honkalehto a nd  McCarthy  2015).  In th e  NBS  extension r egion,  pollock  backscatter  

measurements  were  only  available  from t he  2017  BT  survey.  Within  each  year  and  for  each  

region  r  containing  cells  c,  we  computed t he  total  pollock  backscatter  T  (units  of  m2)  as:  



$,# =  �%���,"  ×  &,"'  

" � � 

where  ���,"  is  the  mean  ��  for  a  given  cell  c  in r egion  r,  and  &,"  is  the  area  of  cell  c  in  region  r  in  

nmi2  (generally  400 n mi2).  The  proportion o f  pollock  backscatter  present  in th e  NBS  extension i n  

2017 w as  then e xpressed  as  a  percentage  of  the  total  pollock  backscatter  in  the  core  EBS  in 2 017  

(Figure  2,  Region 1 ).  Similarly,  for  the  9  years  where  the  Russian s helf  (Figure  2,  Region 3 )  was  

surveyed,  the  pollock b ackscatter  present  in th e  Russian s helf  was  expressed  as  a  percentage  of  

the  total  pollock  backscatter  in th e  core  EBS.   
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260 The  relationship b etween  precision a nd s ubsampling  effort  was  strongly  dependent  on s ub-area  

length.  At  short  15-nmi  sub-area  lengths,  processing ~ 70%  of  pings  was  needed t o a ttain 5 %  

percent  error  (Figure  6).  At  180-nmi  sub-area  lengths,  processing  ~35%  of  the  pings  achieved  

5%  percent  error  (Figure  6).  At  the  5000-nmi  scale,  processing  even 1 %  of  the  sub-area  was  

sufficient  to a chieve  a  low  percent  error;  processing  10%  or  more  of  the  pings  always  resulted i n  

less  than 5 %  percent  error  (Figure  6).  This  suggests  that  analyzing  small  fractions  of  a  large  

dataset  can p roduce  precise  estimates  of  mean b ackscatter  in a   large-scale  survey  area.   

When w e  focused o n 5 %  and 1 0%  subsamples,  the  precision o f  estimates  again i ncreased w ith  

sub-area  length.  Both 5 %  and 1 0%  subsampling  efforts  poorly  estimated m ean  �� at   15-nmi  sub-

area  lengths,  and e xhibited h igh  maximum  percent  error  values  (i.e.  the  poorest  agreement  within  

all  subsamples;  Table  2,  Figure  1).  At  scales  >1500-nmi,  however,  both s ubsampling  efforts  

precisely  estimated  mean  pollock  backscatter.   At  1500-nmi  sub-area  lengths,  mean  percent  error  

was  <5%,  and t he  maximum  percent  error  was  less  than 1 5%.  At  the  scale  of  the  entire  EBS  

survey  (~5000 n mi),  percent  error  was  very  low  in  both t he  5%  and 1 0%  subsamples,  and t he  

maximum e rror  was  well  under  10%  in a ll  cases  (Table  2,  Figure  7).  High  percent  error  values  

were  often a ssociated w ith s ubsamples  that  had  relatively  low  backscatter  (��  <  100 m 2  nmi  -2).  

For  example,  at  the  15-nmi  scale,  the  mean p ercent  error  for  the  lowest  10%  of  backscatter  

measurements  in t he  5%  subsample  was  51%  and  the  mean p ercent  error  for  the  upper  90%  of  

backscatter  measurements  was  32%.   
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281 Echograms  created f rom 5 %  subsamples  allowed f or  many o f  the  relevant  features  used b y  

analysts  (e.g.  the  shape,  depth a nd s cattering  strength o f  fish  aggregations,  individual  fish  

targets)  to b e  clearly  visualized a nd  evaluated  (Figures  4b,  5).  Bottom  integrations,  backscatter  

from  bubbles  swept  under  the  transducer,  and n oise  spikes  were  also r eadily  apparent  and c ould  

be  easily  removed.  Subsampled e chograms  exhibited d iscrete  breaks  in t he  seafloor  in a reas  of  

rapid d epth c hange,  and  backscatter  occasionally  abruptly  changed in   appearance  at  the  start  or  

end o f  subsample  segments.  Generally,  processing  echograms  created f rom  subsampled a coustic  

backscatter  data  was  not  more  challenging  than p rocessing  echograms  from  complete  acoustic  

backscatter  data.  It  was,  however,  considerably  faster:  acoustic  backscatter  data,  subsampled to   

include  5%  of  the  total  data  and f iltered b y  vessel  speed,  could b e  processed b y  an  analyst  ~20  

times  faster  than p rocessing  the  complete  acoustic  dataset.   

The  spatial  distribution a nd a mount  of  backscatter  attributed to p  ollock  was  consistent  between  

two u nique  5%  subsamples.  When a veraged i nto 2 0-nmi  cells,  the  subsamples  exhibited s imilar  

spatial  patterns  (Figure  8).   For  example,  moderately  high b ackscatter  (>  500 m 2  nmi-2)  was  

evident  in t he  southwest  extent  of  the  core  EBS  survey  area  as  well  as  the  shelf  west  of  170º  in  

the  core  EBS  survey  area,  and a   low  backscatter  region a long  the  eastern  extent  of  the  EBS  

shallows  survey  area  was  also e vident  in b oth s ubsamples.  Local  high-backscatter  “hotspots”  

were  also c onsistently  captured,  as  seen i n a   single  cell  located n ear  the  northern b oundary  of  the  

survey  grid ( indicated w ith a rrow,  Figure  8).  On a   regional  scale,  backscatter  estimates  from  the  

subsamples  differed b y  <6%  in t he  NBS  extension a nd  EBS  shallows  regions  and < 1.5%  in th e  

core  EBS  region ( Figure  9).  Bootstrapped 9 5%  confidence  intervals  for  the  two s ubsamples  

overlapped in e  very  region ( Figure  9).  The  close  agreement  between s ubsamples  suggests  that,  at  

larger  regional  scales,  the  mean b ackscatter  computed f rom  the  entire  dataset  was  precisely  
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304 estimated b y  processing a   5%  subset.  In a ddition,  patterns  in b ackscatter  attributed t o p ollock  

from  the  BT  survey  qualitatively  agreed  with p atterns  in p ollock  abundance  in th e  previous  

year’s  AT  survey  where  survey  efforts  overlapped,  with t he  exception o f  a  low-backscatter  

region  centered  around 1 70°  W  that  was  noted in t  he  BT  (but  not  the  AT)  survey  (compare  

Figures  2 a nd 8 ).   

The  relative  abundance  of  pollock  in th e  NBS  or  Russian s helf  region w as  a  primary  

consideration in d  eciding w hich a rea  should b e  prioritized i n e xtending  the  EBS  AT  survey.  We  

therefore  compared p ollock  backscatter  in th e  NBS  extension r egion d uring  the  2017 B T  survey  

to t hat  from  historical  AT  surveys  in t he  Russian s helf  region.  Pollock  backscatter  in th e  NBS  

extension r egion d uring 2 017 w as  approximately  8.7%  of  that  in t he  core  EBS  region ( BT  

subsample  1 =   8.3%,  BT  subsample  2 =   8.9%).  The  proportion o f  backscatter  in th e  Russian  

shelf  region w as  highly  variable  in 9 s  urveys  conducted f rom  1994-2014  (0.9%  - 29.7%,  of  that  

in t he  core  EBS  region;  Figure  10).  In 6 o  f  9 s urveys,  the  proportion o f  pollock  backscatter  on  

Russian s helf  was  lower  than t he  proportion o bserved in t  he  NBS  extension r egion i n 2 017  

(Figure  10).   

305 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 4.  Discussion  

Small  subsamples  of  acoustic  backscatter  from  an  AT  survey  of  walleye  pollock  yielded p recise  

point  estimates  of  mean  backscatter  over  the  moderate  to la rge  scales  which a re  relevant  to  many  

survey  applications,  as  the  primary  quantities  derived f rom th ese  surveys  are  large-scale  

abundance  indices.  Walleye  pollock  represents  a  widely  distributed a nd s patially  correlated f ish  

population ( Horne  and  Walline  2005;  Walline  2007).  The  precision o f  backscatter  estimates  from  
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326 subsampled d atasets  suggests  that,  for  populations  displaying  similar  characteristics,  results  

comparable  to th ose  obtained b y  completely  processing  datasets  can b e  attained w ith le ss  

processing  effort  and th at  exhaustively  processing  large  datasets  results  in d iminishing  returns.  

Our  subsampling  approach c onsisted o f  two  steps:  we  initially  tested th e  precision o f  backscatter  

estimates  by  comparing p oint  estimates  from  subsamples  to p oint  estimates  from a   fully  sampled  

dataset,  and w e  then u sed  these  results  to s elect  appropriately  sized s ubsamples  from a   

previously  unprocessed d ataset.  This  approach is   general  and c an b e  applied  to e valuate  the  

merits  of  this  approach  for  large  acoustic  datasets  collected i n o ther  regions  or  on o ther  species  

assemblages  of  interest.  

In th e  2016 A T  survey  of  walleye  pollock,  5%  subsample  estimates  of  mean b ackscatter  were  

generally  within 5 %  of  the  value  from  fully  sampled d atasets  at  scales  >1500 n mi  of  survey  

trackline.  This  is  not  unexpected:  as  the  length o f  trackline  increased,  the  total  number  of  50-ping  

samples  comprising  a  given s ubsample  increased  as  well.  With a n i ncreased  number  of  samples,  

sampling  theory  suggests  that  the  sample  mean w ill  converge  towards  the  true  mean ( Cochran  

1977).  At  a  scale  of  1500  nmi,  a  5%  subsample  comprised 5 00  evenly  spaced 5 0-ping  samples;  

at  the  scale  of  the  full  5000 n mi  survey,  5%  subsamples  comprised 1 635 5 0-ping  samples.  At  

shorter  scales  (10’s  to 1 00’s  of  nautical  miles  in t he  AT  dataset),  the  number  of  samples  obtained  

in s mall  subsamples  was  too l ow  to r eliably  approximate  the  fully  sampled  mean in a    small  area,  

and s ampling  >35%  of  the  total  acoustic  backscatter  data  would h ave  been  necessary  to a chieve  

5%  percent  error.  This  negates  a  primary  advantage  of  subsampling,  which  is  to r educe  analyst  

processing  time.  At  our  scales  of  interest  (large  survey  areas),  however,  precise  point  estimates  

of  mean b ackscatter  could b e  produced  with s ubstantially  reduced  effort.  
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348 We  then u sed th e  results  of  the  AT  survey  analysis  to i nform s ubsampling o f  the  2017 B T  

survey.  Given t hat  our  scale  of  interest  was  large  (1000’s  of  miles),  we  processed tw o 5 %  

subsamples  and ju dged p recision b y  empirically  comparing r esults.  Mean b ackscatter  estimates  

at  the  regional  scale  were  always  within 6 %  between  subsamples,  and 9 5%  confidence  intervals  

were  well  constrained  around t he  mean a nd s imilar  between s ubsamples.  Given th is  agreement,  

we  considered t hese  subsamples  acceptable  for  informing  planning  of  future  surveys.  However,  

if  these  two s ubsamples  had s hown p oor  agreement,  we  could s imply  have  sampled  additional  

fractions  of  the  available  data  until  reaching a n a cceptable  level  of  precision.  

It  is  important  to n ote  that  the  EBS  walleye  pollock p opulation  may  be  particularly  suited t o  

subsampling.  Because  EBS  walleye  pollock p opulations  demonstrate  strong  spatial  correlation  

(Horne  and  Walline  2005;  Walline  2007)  and a re  the  dominant  contributor  to m idwater  fish  

backscatter  (De  Robertis  et  al.,  2010,  Honkalehto  et  al.  2018),  echograms  created  from  small  50-

ping  segments  were  sufficient  for  analysts  to v isualize  relevant  characteristics,  including  

individual  fish t argets  as  well  as  school  morphology  and v ertical  distribution.  In s ystems  with a   

higher  diversity,  either  in  terms  of  species  composition o r  in t erms  of  the  distribution o f  size  

classes  within a   species,  subsampling  longer  ping s egments  may  be  necessary f or  analysts  to  

visualize  patterns  in e chograms.  Similarly,  if  the  distribution o f  species  or  size  classes  changes  

rapidly  over  small  spatial  scales,  or  if  the  survey  domain it self  is  relatively  small  in c omparison  

the  EBS  survey  domain,  the  subsampling  effort  levels  that  were  effective  in t he  current  study  

(5%  - 10%  of  the  available  data)  may  be  too l ow  to p recisely  estimate  mean b ackscatter,  and  

analysis  of  larger  subsamples  may  be  necessary.   Fortunately,  the  efficacy  of  the  approach i n a   

given s ituation c an b e  readily  evaluated b y  comparing  the  results  from  processing  data  

subsamples  with th ose  from p rocessing  the  entire  dataset.  
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371 In  a  practical  sense,  subsampling  produced a ctionable  results  in th e  current  study.  We  were  able  

to r apidly  process  a  large  existing  dataset  and  make  a  more  informed d ecision a s  to t he  merits  of  

extending  the  2018 A T  survey  into th e  northern B ering  Sea  or  the  Russian  shelf.  The  fraction o f  

pollock  backscatter  in t he  NBS  extension r egion,  as  estimated f rom th e  subsampled 2 017 B T  

survey  dataset,  was  greater  than t he  fraction o bserved o n th e  Russian s helf  in m ost  of  the  past  AT  

surveys,  suggesting  that  a  sizeable  number  of  pollock w ere  present  in t he  area.  In  addition,  

bottom  trawl  catches  from  the  2017 B T  survey  in  the  NBS  extension r egion i ndicated th at,  as  

compared to a    previous  survey  in 2 010,  demersal  pollock  distribution h ad s hifted n orthward  

(Stevenson  and  Lauth 2 018).  Finally,  the  primary  goal  of  the  Bering  Sea  AT  survey  is  to a ssess  

pollock  distribution a nd  abundance  in t he  US  exclusive  economic  zone,  which in cludes  the  NBS  

extension r egion ( Honkalehto e t  al.  2018).  Given t he  substantial  midwater  pollock  backscatter  

and d emersal  pollock c atches  observed in th  e  NBS  extension i n 2 017,  the  survey  was  expanded  

to t he  NBS  extension r egion i n 2 018.  Importantly,  this  decision w as  made  with a   reasonable  

amount  of  effort:  analyzing  the  entire  2017 B T  dataset  to a ssess  midwater  pollock  backscatter  

would n ot  have  been  feasible  in th is  application,  as  it  consisted o f  approximately  11  million  

pings  and  actionable  and  timely  results  were  required.  Without  an e fficient  processing m ethod,  a  

more  ad-hoc  decision w ould h ave  been  made.  Preliminary  results  from  the  2018 A T  survey  

indicate  that  approximately  8.7%  of  core  survey  area  pollock  backscatter  was  observed i n t he  

NBS  (Honkalehto p ers.  comm.).  This  is  similar  to  the  estimate  derived  from  the  2017 B T  survey  

acoustic  measurements,  where  approximately  8.7%  of  core  survey  area  pollock  backscatter  was  

observed i n t he  NBS  extension r egion.   

Systematic  subsampling  of  acoustic  datasets  can b e  considered a n e xtension o f  the  subsampling  

that  occurs  at  earlier  stages  of  the  data  collection  process.  Acoustic  surveys  necessarily  cover  
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394 only  a  small  fraction o f  the  total  available  survey  area,  and th erefore  the  selected s urvey  

locations  themselves  represent  a  subsample.  Systematic  subsampling  designs  are  commonly  used  

to s elect  survey  locations  in m idwater  (Simmonds  et  al.  1992;  Simmonds  and M acLennan 2 005)  

and r iverine  (Skalski  et  al.  1993;  Enzenhofer  et  al.  1998;  Xie  and  Martens  2014)  fisheries  

surveys  because  they  precisely  estimate  spatially-averaged  mean  abundance  in t hese  systems  

(Skalski  et  al.  1993;  Simmonds  and  Fryer  1996;  Simmonds  and  MacLennan 2 005;  Xie  and  

Martens  2014).  Echosounders  are  often o perated  at  ping  rates  that  are  lower  than t he  maximum  

for  unbiased d ata  collection d uring  surveys  (ICES  2015a),  which  can f urther  be  considered a   

form  of  subsampling.  Collecting  more  data  would  result  in a   larger  processing  burden,  but  little  

improvement  of  the  survey  estimate.    

In  applications  where  traditionally  processing  datasets  can  create  analysis  bottlenecks,  an  

alternative  approach to s  peed a nalyses  has  been t he  development  of  automated a nd s emi-

automated p ost-processing  routines.  These  routines  can b e  general,  classifying  backscatter  across  

diverse  ecosystems  and s pecies,  or  they  can b e  species- and r egion- specific.  General  approaches  

have  been u sed to c  lassify  backscatter  into b road  classes  (i.e  “fish”,  “near-surface  bubbles”)  

using  probabilistic  clustering  techniques  (Anderson e t  al.  2007),  and to i  dentify  midwater  sound  

scattering  layers  composed o f  zooplankton a nd s mall  fishes  by  characterizing  layer  extent,  

thickness,  and a coustic  properties  (Cade  and B enoit-Bird 2 014;  Proud e t  al.  2015).  Regionally  

focused a pproaches  to c lassify  acoustic  backscatter  to s pecies  or  acoustic  class  have  included  

pattern r ecognition,  which h as  been s uccessful  in  automatically  classifying m ultiple  Chilean  

pelagic  fish s pecies  (Robotham  et  al.  2010),  and i ntegrating  knowledge  from h istorical  species  

distribution p atterns,  which h as  been u sed to id  entify  areas  of  the  EBS  where  backscatter  can b e  

attributed to p  ollock  based o n d epth d istributions  (Honkalehto e t  al.  2011).      
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417 While  these  automated  and s emi-automated  methods  can b e  effective,  the  traditional  approach to   

species  classification m ay  be  advantageous  in m any  instances.  Uncertainty  in s pecies  

identification m ay  be  lower  with  manual  classification:  it  is  possible,  for  example,  that  

approaches  relying  on h istorical  patterns  of  distribution a nd a bundance  (i.e.  geographic  locations,  

aggregation b ehaviors,  environmental  associations,  vertical  distributions)  may  become  less  

reliable  as  species  distributions  and/or  behaviors  change  over  time.  In c ases  where  species  of  

interest  occur  in  close  proximity  to n ear-surface  sound s cattering  layers  (as  in t he  current  study,  

see  Figure  5),  it  may  also  be  challenging  to a utomatically  distinguish a ppropriate  boundaries.  

Manual  post-processing  may  also a llow  for  echo i ntegration c loser  to th e  bottom  and s urface  

boundaries,  and f or  more  accurate  separation o f  fish a nd i nvertebrate  backscatter  near  these  

boundaries  (ICES  2015b).   This  is  especially  important  in th e  current  application:  the  expanded  

survey  region is   relatively  shallow  in c omparison to t  he  core  survey  region,  and p ollock  tend to   

be  distributed c loser  to t he  bottom  at  shallower  depths  (Kotwicki  et  al.  2009).  Additional  scrutiny  

can a lso a llow  for  more  confidence  in e xcluding  the  strong  seafloor  return,  which c an  mask  the  

comparatively  weak  returns  from  biological  targets,  as  well  as  in t he  removal  of  artifacts  due  to  

surface  turbulence  and v essel  noise  spikes.  Currently  used e xisting  automated a pproaches  

(Honkalehto e t  al.  2011)  would h ave  required  more  conservative  integration li mits  (i.e.  

backscatter  integration t o  3m  above  bottom,  as  opposed t o 0 .5 m   above  bottom),  or  decreased  

confidence  in n ear-boundary  integrations,  limiting  the  utility  of  the  BT  analysis  at  a  depth w here  

pollock  were  likely  to b e  abundant.  Finally,  automated p attern-recognition a pproaches  have  not  

yet  been d eveloped,  tested,  and r efined f or  many  common s urvey  situations,  and m ay  be  less  

effective  when  applied in   conditions  that  differ  from  the  training  datasets  used to d  evelop t he  

methods.  In  many  cases,  it  may  ultimately  be  faster  and m ore  effective  to s imply  analyze  data  
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440 subsamples  than t o i nvest  in d eveloping  and v alidating  more  sophisticated  automated  

approaches.  

In th e  context  of  the  abundance  surveys  that  have  traditionally  been a   primary  focus  of  fisheries  

acoustics,  the  spatially  averaged  mean is   the  most  relevant  metric  and s ubsampling  may  offer  

substantial  efficiencies  with l ittle  information lo ss.  In  addition,  as  the  use  of  acoustic  data  in  

large-scale  ecosystem  studies  continues  to e xpand ( Koslow  2009;  Ressler  et  al.  2014;  Stauffer  et  

al.  2015;  Proud e t  al.  2017),  subsampling  can p rovide  a  flexible  and r apid w ay  to  gain in sight  

from  large  datasets.  Choosing  subsample  size  in f uture  applications  will  ultimately  depend o n t he  

scale  of  interest,  the  diversity  and  composition o f  the  scattering  populations,  and t he  desired  

degree  of  precision.  Subsampling  offers  several  advantages:  it  is  straight-forward to i  mplement,  

one  can  arrive  a  provisional  estimate  of  backscatter  by  processing  a  small  subset,  and t he  impact  

of  subsampling  in a   particular  environment  can b e  readily  assessed b y  analyzing  several  subsets  

of  a  dataset  and e mpirically  judging  precision.   Thus,  subsampling  should n ot  be  overlooked,  as  

this  simple  and a ccessible  approach i s  likely  to  make  analysis  of  the  large  acoustic  datasets  that  

are  increasingly  becoming  common  more  tractable.      
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627 Tables  

 

Table  1.  The  number  of  unique  AT  survey  datasets  at  each s ub-area  length,  the  nominal  number  

of  pings  per  dataset,  and  the  total  number  of  unique  subsamples  at  5%  and  10%  subsampling  

effort  for  all  datasets  combined.   
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 Sub-area   Number of   Number of 

 length (nmi)  Datasets  pings  subsamples  

  5%  10% 

 15  327   5000  6540  3270 

 180  28  59,000  560 280  

 750  7  245,550  140 70  

 1500  3  500,000  60 30  

 5000  1  1,635,237  20 10  
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Table  2.  The  precision o f  mean b ackscatter  estimates  for  5%  and 1 0%  subsampling  effort  in t he  

AT  survey.   The  mean p ercent  error  for  each s ub-area  length a nd s ubsampling  effort  relative  to  

processing  the  entire  dataset  was  computed f or  each s ubsample  (see  Table  1).   The  mean p ercent  

error  over  all  subsamples  is  given.   The  maximum d eviation o f  any  single  dataset  is  given i n  

parentheses.  

 Sub-area  Subsampling 

 length (nmi)  effort  

 5%  10% 

 15  33.7 (946.6)   22.6 (423.3)  

 180  14.1 (119.0)   8.9 (48.3)  

 750  8.1 (39.8)   4.6 (14.4)  

 1500  4.5 (14.2)   2.4 (6.8)  

 5000  2.2 (6.1)   1.3 (3.2)  
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1 Figure  1.  Overview  of  the  Eastern B ering  Sea  shelf  study  region.  The  shaded  grey  area  

encompasses  the  2017 b ottom  trawl  dataset  (“BT  survey”),  black  lines  indicate  transects  in t he  

2016 E BS  acoustic-trawl  survey  dataset  (“AT  survey”),  and th e  cross-hatched n orthern  area  

indicates  the  Russian s helf  expansion r egion.  

 

Figure  2.  Detail  of  the  2016 E BS  AT  survey  and s tudy  regions.  Region 1   (referred t o a s  “core  

EBS”)  is  the  core  survey  area  covered i n t he  biennial  eastern B ering  Sea  acoustic  trawl  survey.  

Transect  lines  are  divided i nto 0 .5 n mi  horizontal  intervals;  backscatter  attributed to p  ollock  is  

integrated w ithin e ach 0 .5 n mi  interval  and b ackscatter  is  color  coded.  Region 2 i  s  the  potential  

expanded a coustic  survey  area  periodically  sampled  by  bottom  trawl  surveys  (referred t o a s  

“NBS  extension”).  Region 3 i  s  the  potential  expanded a coustic  survey  area  in t he  Russian  

Navarin  Shelf  region ( referred to   as  “Russian s helf”).  Region 4 is    not  under  consideration f or  

acoustic  trawl  survey  expansion,  but  is  partially  sampled b y  bottom  trawl  surveys  (referred t o a s  

“EBS  shallows”).   

 

Figure  3.  Locations  of  sub-area  datasets  created f rom th e  2016 E BS  AT  survey.  The  AT  survey  

was  divided in to s maller  sub-areas  of  approximately  a)  15-nmi,  b)  180-nmi,  c)  750-nmi,  and  d)  

1500-nmi;  the  complete  5000-nmi  survey  was  also i ncluded a s  a  dataset.  Unique  datasets  are  

identified b y  alternating s hades  of  grey;  n  refers  to t he  total  number  of  datasets  for  a  given s ub-

area  length.   

 

Figure  4.  Illustration o f  subsampling  procedure.  a)  The  shaded  grey  area  indicates  a  dataset  of  

5000 p ings.  Vertical  black  bars  indicate  boundaries  of  continuous  50-ping  segments.  Red b ars  

indicate  50-ping  samples  taken f rom  the  dataset  sequentially  every  1000 p ings.  In t his  example,  

250 p ings  are  sampled ( 5%).  b)  1000-ping  segment  with b ackscatter  attributed t o p ollock  in t he  

EBS.  Vertical  gridlines  separate  50 c ontinuous  ping  segments.  The  shaded  orange  region  

indicates  a  50-ping  subsample.   

 

Figure  5.  Example  of  an  echogram f rom th e  BT  survey  created  from a   5%  subsample.  The  near-

surface  backscatter  above  green l ine  is  attributed t o a n u nidentified m ix  of  plankton a nd  age-0  

pollock  (“unidentified b ackscatter”),  while  the  area  below  the  green l ine  indicates  backscatter  

attributed to a  ge  1+  walleye  pollock.  This  echogram  represents  8 h ours:  after  subsampling  and  

filtering  for  vessel  speeds  <  3.1 m /s,  it  consisted o f  1600 p ings.  

 

Figure  6.  Percent  error  of  mean b ackscatter  estimated f rom A T  survey  subsamples  as  a  function  

of  sampling  effort  (i.e.  percent  of  pings  sampled).  Points  above  solid  grey  line  are  within 1 0%  of  

the  estimate  from t he  full  dataset;  points  above  the  dotted  grey  line  are  within 5 %.  Vertical  lines  

indicate  95%  confidence  intervals  calculated u sing  bootstrapped s amples  of  mean p ercent  error  
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39 at  each p oint  for  the  15-nmi  (n =   327 d atasets  per  point)  and 1 80-nmi  (n =   28 d atasets  per  point)  

sub-areas;  confidence  intervals  could n ot  be  computed f or  the  5000-nmi  sub-area  as  there  was  a  

single  estimate  at  each p oint.  Symbols  indicate  to  sub-areas  ranging  from 1 5 n mi  to 5 000 n mi  in  

length.  

 

Figure  7.  Boxplots  of  percent  error  of  mean b ackscatter  evaluated o ver  distances  of  15 t o 5 000  

nmi  in t he  AT  survey  using  a)  5%  of  the  total  pings  in th e  sub-area  and  b)  10%  of  the  total  pings  

in t he  sub-area.  Values  below  the  dotted g rey  line  are  within 5 %  of  the  estimate  from th e  full  

sub-area.  Numbers  within e ach b oxplot  indicate  the  number  of  samples  in  a  given c ategory.  The  

solid li ne  within e ach b ox  represents  the  median p ercent  error.  The  lower  and u pper  limits  of  

each b ox  represent  the  first  and t hird q uartile,  while  the  whiskers  represent  1.5 o f  the  

interquartile  range  and d ots  are  outliers.  Note  that  the  y-axis  is  logarithmic.   

 

Figure  8.  Mean  ��        in 2 0  ×        20 n mi  cells  using  two 5 %  subsamples  (a  and  b)  from  the  2017 B T  

survey  dataset.  Arrows  indicate  a  high-��        region n orth o f  St.  Lawrence  Island.  

 

Figure  9.  Mean  ��        estimates  from t wo 5 %  subsamples  within 3 B  T  survey r egions.  Region  

numbers  correspond to r  egions  in  Figure  2.  Error  bars  correspond t o 9 5%  confidence  intervals  

calculated u sing  bootstrapped s amples  (n =   5000)  of  the  mean  ��        within e ach  survey  region  and  

subsample.  

 

Figure  10.  Pollock  backscatter  (expressed a s  a  percent  of  core  survey  area  pollock  backscatter)  in  

the  Russian s helf  area  from  acoustic-trawl  surveys  conducted in 1  994 -  2014.  The  dotted b lack  

line  represents  pollock  backscatter  (expressed  as  a  percentage  of  core  survey  area  pollock  

backscatter)  in t he  NBS  extension a rea,  as  estimated u sing  the  mean o f  two  5%  subsamples  from  

the  2017 B T  survey.  
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